
NetML: An NFV Platform with Efficient Support
for Machine Learning Applications

Aditya Dhakal and K. K. Ramakrishnan
Dept. of Computer Science and Engineering, University of California, Riverside

adhak001@ucr.edu, kk@cs.ucr.edu

Abstract—Real-time applications such as autonomous and
connected cars, surveillance, and online learning applications
have to train on streaming data. They require low-latency, high
throughput machine learning (ML) functions resident in the net-
work and in the cloud to perform learning and inference. NFV on
edge cloud platforms can provide support for these applications
by having heterogeneous computing including GPUs and other
accelerators to offload ML-related computation. GPUs provide
the necessary speedup for performing learning and inference to
meet the needs of these latency sensitive real-time applications.

Supporting ML inference and learning efficiently for
streaming data in NFV platforms has several challenges. In
this paper, we present a framework, NetML, that runs existing
ML applications on an heterogeneous NFV platform that
includes both CPUs and GPUs. NetML efficiently transfers
the appropriate packet payload to the GPU, minimizing
overheads, avoiding locks, and avoiding CPU-based data copies.
Additionally, NetML minimizes latency by maximizing overlap
between the data movement and GPU computation. We evaluate
the efficiency of our approach for training and inference using
popular object detection algorithms on our platform. NetML
reduces the latency for inferring images by more than 20% and
increases the training throughput by 30% while reducing CPU
utilization compared to other state-of-the-art alternatives.

I. INTRODUCTION

Real-time applications such as autonomous driving,
connected cars, surveillance, multimedia delivery and even
network management, etc. are increasingly dependent on
machine learning capabilities. These require low-latency, high
throughput processing of the machine learning (ML) functions.
Given their computational complexity, they often depend
on cloud computing facilities residing in the network. Edge
cloud platforms supporting network resident functions, such as
Network Function Virtualization (NFV), can provide support
for these applications, processing the data as it streams in from
the network. An important goal is to process data (either for
learning or for inference) at high throughput and low latency.

ML algorithms such as Deep Neural Networks (DNN)
have seen increasing use as they improve in accuracy and
effectiveness [1]. However, ML models have become complex,
requiring significant compute power, typically requiring
specialized accelerators such as GPUs to speed up the
processing [2], [3]. A number of useful applications, require
offloading the task of learning and inference to an edge or cloud
server rather than the end-devices that generate the information
since these devices have insufficient compute and storage. [4]
However, offloading any task to edge or cloud server comes
with overheads which increases end-to-end latency. This

includes network protocol stack cost, I/O, system calls etc.,
referred to as a ”datacenter tax” [5]. This datacenter tax will
only get higher with addition of overheads incurred by GPU
API calls and GPU I/O. In our experiments, we have observed
the I/O to the GPU is about 20-40% of the overall task. Any
reduction of the time for GPU’s I/O will be extremely valuable
for lowering ML inference latency on edge or cloud servers.

ML applications often operate on streaming data. Popular
ML libraries and frameworks such as PyTorch, TensorFlow,
Caffe combine CPU cores with GPUs for processing streaming
data. But these platforms come with a number of challenges, as
they are not optimized for performing inference over streaming
data on these CPU/GPU platforms. One of the key challenges
with faster inference of streaming data is to perform efficient
transfer of the data received from the network to the GPU
subsystem. Typical system architectures have GPUs residing
on the Peripheral Component Interconnect Express (PCIe)
bus, with a Direct Memory Access (DMA) engine helping to
transfer a large chunk of data from a contiguous region in the
host’s memory. However, transferring data received as packets
stream in one after the other can result in poor performance,
with substantial latency, because of the need to copy the data
into a contiguous page-locked pinned CPU memory region
and setting up the DMA. Since low latency is critical for
real-time systems, we need to achieve multiple goals at the
same time: deliver the streaming data to the GPU complex as
the data arrives over the network, minimize overheads on both
the CPU and GPU for performing communication and data
movement tasks; and maximize the parallelism in the GPU
for performing machine learning tasks. We observe that just
running the existing popular libraries on a CPU/GPU system
for streaming data from the network tends to perform poorly.

Further, the emerging field of distributed machine-learning
systems [6] transmits data between distributed nodes for
training, inference and result aggregation. Platforms like DAIET
[7] perform in-network aggregation of results computed by
various ML worker nodes. Other approaches like Branchynet
[8] create a single DNN, dividing computational layers
between the end-device, edge-server and cloud-server, using
the network to transmit data between these computing devices.
These approaches involve a lot of data transfers, and perform
ML operations in multiple network-resident systems. Therefore,
getting the network data to the GPU quickly and using the
CPU and GPU effectively are valuable in all these domains.

There are several approaches possible for efficiently moving
data to the GPU. NVIDIA’s GPUDirect is one where data978-1-5386-9376-6/19/$31.00 ©2019 IEEE

2019 IEEE Conference on Network Softwarization (NetSoft)

396

is directly transferred from a Fibrechannel NIC to the GPU.
However, this method is limited to specialized NICs [9] and
requires modified drivers that are not available for most other
NICs. The goal of our work is to design mechanisms that
can be more broadly useful for Ethernet NICs and common
off-the-shelf (COTS) hardware with various GPUs.

There are other approaches to decrease inference latency
of course, which involve compromises in the ML applications
themselves, having to tradeoff application capability for
throughput. DNN implementations in ML libraries have
changed the DNN by either reducing the number of neural
network layers to obtain faster inference. E.g., Yolo V3 [10]
uses 106 layers in the neural network while a lightweight
variant Tiny-Yolo only uses 23. Alternately, for object
detection, the model may reduce the resolution of the input
image to reduce the computation needed, to achieve speedup.
Other techniques, such as binarized neural networks [11],
do model compression and model pruning to have the DNN
models take less memory and reduce computation for each
inference. Hardware approaches such as NVIDIA GPUs
with specialized Tensor cores provide speedup on inference.
Eyeriss [12], which increases the re-usability of the data in the
neural network, is another option. Most of these options are
beneficial when all of data exists in memory, which implies
significant latency because they have to wait for buffering
all of the data. The options of modifying ML applications to
tradeoff accuracy for throughput and performance and using
special-purpose hardware are not entirely the most desirable,
and have limited applicability for use with streaming data.

We have built an NFV platform, NetML, for supporting ML
applications on a COTS hardware platform. Our contribution
is to develop a fundamentally different approach to data
movement from the host to the GPU and efficiently transfer
data from network packets. The current CPU and GPU systems
have evolved in a way that the process of transferring data from
the host (CPU) to GPU requires the data to be ”pushed” to GPU.
With the GPU on the other end of a PCIe BUS, the host has to
communicate the address, data size and other information to set
up the GPU’s DMA engine by executing multiple CUDA API
calls and driver functions. This process of ”pushing” data from
CPU is expensive and is incurred for each packet scattered
around in host memory. NetML, avoids this unnecessary
overhead and latency of processing CUDA API and the driver
function repeatedly by initiating the data transfer from GPU
subsystem itself. NetML”pulls” the data by starting the data
transfer by providing the GPU threads the address of multiple
network packets and the data transfer of network packets is
initiated from the GPU subsystem itself. Thus, expensive CUDA
API and driver functions are invoked just once. Moreover,
we exploit the shared memory huge-pages of the NFV plat-
form [13] to eliminate data movement by the CPU, and pin this
shared memory to allow the data to be accessed by the GPU sub-
system as it streams in, with low latency and minimal overhead.

NetML also maximizes the overlap between GPU execution
and the DMA-based data transfer to the GPU complex for
subsequent ML stream data processing. In addition, NetML

seeks to maximize the overlap of CPU NF processing with
the GPU execution. Thus, we reduce latency and improve
throughput substantially by eliminating CPU data movement,
streaming data to the GPU subsystem and maximizing overlap
of CPU, DMA and GPU functions.

With NetML, efficient data transfer to the GPU cuts the
task completion time for inference in neural networks. In the
experiments using image detection ML libraries, we use NetML
for inference of a large image that is received by the edge server
in multiple packets. NetML helps achieve maximum pipelined
parallelism across all components, including the network link
carrying the packets, DMA setup and transfer to GPU, and
initiation of the inference engine. NetML thus reduces the time
to infer a single image by at least 20% compared to a traditional
implementation of the same libraries without NetML’s opti-
mizations. The NetML platform, runs on COTS hardware and
allows plugging in of existing ML libraries and models while
providing speedup both for learning and inference for streaming
data, without requiring modifications to those applications.

II. MOTIVATION

There are a number of challenges associated with
performing ML with streaming data, both for learning and
inference, in an edge server. First, the ML models are
complex and compute-intensive. The popular Convolutional
DNN models such as AlexNet and ResNet50 require very
high number of multiply and accumulate (MAC) operations
(666 million and 3.9 billion MACs, respectively) [2]. It is
well understood that even with modern high-end servers,
CPU-based processing is just not sufficiently fast. In contrast,
the GPUs can spawn thousands of lightweight threads, which
can perform these MAC operations in parallel more effectively,
thus enable to achieve very high speedup.

More importantly, as data streams through the edge-server
at high bandwidth, the time available at the edge server to
process the data is limited. Furthermore, storing the streaming
data for learning or inference subsequently might not be
feasible due to significant storage requirement. Thus, it is
necessary that we learn and perform inference as the data
is streamed through the edge server, without incurring large
latencies from buffering the data. Using GPUs to perform ML
is likely the only option at the edge server.

To reiterate this point, we performed experiments in an edge
server to observe the time required by typical ML application
to perform object detection on an image data being forwarded
through it. We utilized two alternatives to perform inference
in the data. First, in CPU-Only approach, we extract the
streaming data and process it in ML applications such as
PyTorch and Darknet (Tiny-Yolo) running in the CPU itself.
Alternatively, we use the CPU-GPU based approach, where
we DMA the data received from streaming packets (one
packet at a time) to the GPU and process the image data in
a DNN model running in a GPU.

We used an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
processor to conduct inference by a CPU and the NVIDIA
Tesla P100 GPU to perform inference while using a GPU. We

397

used VGG-11 in PyTorch and Tiny-Yolo in Darknet to get the
time for inference on one image. In Table I, we can observe
that, CPU-Only approach is highly inefficient to perform the
ML computations, while the CPU-GPU approach is nearly
100x times more efficient than CPU-only approach. Of course,
this is well-known.

TABLE I
TIME FOR OBJECT DETECTION ML APPLICATION IN CPU AND GPU

ML Application CPU-Only CPU-GPU (A#1) GPU-Only
(ms) (ms) (ms)

PyTorch (VGG-11) 636 8.6 3.95
Darknet (Tiny-Yolo) 1067 11.3 4.68

However, to understand the overhead and complexity of
processing the streaming data, we compare the time taken
to run the model on the GPU when all the data is locally
available in GPU (GPU-Only). We believe understanding the
tradeoff is useful when we want to run ML applications on
edge- servers. We observe that in comparison to the processing
in the GPU-Only (i.e., all data available at the GPU) case, the
CPU-GPU (A#1) approach is is still considerably worse. There
is almost a 2-3x increase in inference time with A#1. The
additional delay with A#1 is caused by having to wait for the
data to arrive over the network to the CPU and then eventually
having to transfer to the GPU from the host memory.

Thus, getting the required data to the GPU quickly and
efficiently is essential. In NetML we tackle this problem by
efficiently transferring the streaming data to the GPU. Thereby,
we significantly reduce the overall task completion time.

III. SYSTEM ARCHITECTURE

NetML is a capability built on top of a DPDK [14]-based
OpenNetVM [13] NFV platform. OpenNetVM utilizes shared
memory in user space, with the Ethernet NIC directly DMAing
the packet into the shared memory, bypassing the kernel
network stack. The architecture of NetML is shown in Figure
1. We first describe a number of key components in the system
and then how they fit together in NetML to support efficient
ML processing on the system.

NF 3

CPU threads performing packet TX and RX

NF Manager R

T

N
I
C

OpenNetVM Shared Memory
(Packets, Rings etc.)

[CUDA Pinned Memory]

NF 1 NF 2

GPU
DMA Engine

DMA Pinned Memory

CUDA API

1

2 3

4

5

Fig. 1. NetML Architecture: 1.NF manager polls NIC’s Rx and Tx rings
for packet descriptors. 2.NF manager can access the packets in OpenNetVM’s
shared memory. 3. NFs have zero copy access to the packets in shared memory.
4. Shared memory is ”Pinned” (sec.III-D1), allowing GPU zero-copy access.
5. ML NFs can use GPU using CUDA API

A. NF Manager

The NF manager is the primary process that manages the
NFV platform. It reserves a shared memory buffer in the Linux
Hugepage memory for buffering the incoming packets from
NIC. The NF manager also creates the transmit and receive ring
buffers, which are necessary for packet processing and com-
munication between the NFs. It also initializes multiple CPU
threads for packet processing at the start-up. The major threads
include i) Rx threads: poll the NIC rings to obtain the descriptor
entry of the incoming packets and de-multiplex the packets to
the NFs by checking the flow table entry for each packet. ii)
Tx threads: poll the NFs transmit rings and place the packet de-
scriptor in the NIC’s Tx ring for transmitting out the packet, and
iii) NF manager main thread : performs NFV platform initializa-
tion, bookkeeping of the registered NFs, and updates statistics.

B. Shared Memory

The NF manager creates a shared memory buffer during
application startup by reserving Linux huge page memory. This
hugepage memory buffer is used to create Mbufs to buffer
incoming packets and create the NF’s ring buffers. When
new NFs are started, they map the shared memory to their
address space so they can have zero copy access to the packets
buffered there. In OpenNetVM, NICs directly DMA packets
to the shared memory. It is important that the shared memory
buffer not get swapped out while the NF manager and NFs
are running. The NF manager locks the memory pages of
the shared memory using the DPDK Environment Abstraction
Library (EAL), guaranteeing that the shared memory buffer
will remain in RAM and not get swapped out to disk.

C. Network Functions (NFs)

NFs in OpenNetVM can run as processes or containers for
in-network applications (e.g., forwarding, IDS, encryption, etc.)
that can process the packets in the shared memory. When an
NF initializes, it maps the shared memory reserved by the
NF manager, so it has zero-copy access to the packets. In
OpenNetVM, each NF maintains a set of ring buffers, where
the packet descriptors can be enqueued by the NF manager or
an upstream NF. Once the descriptors are enqueued, the NF can
then process the packet. In NetML, we run ML applications as
NFs so the ML learning and inference could be performed on
the stream of packets, as they arrive. Furthermore, ML NFs also
pin shared memory by using the CUDA API to set up efficient
data transfer to the GPU. The reason to pin the shared memory
and the methods used to pin it are explained in section III-D.

D. CUDA Pinned Memory

In ways similar to NICs, GPU devices also utilize DMA
to transfer data from the host’s memory to device memory.
CUDA runtime requires that data being transferred to the
GPU reside in page-locked memory (also known as ’pinned
memory’) precluding it from being swapped out while the
transfer is in progress. If a data transfer to the GPU is initiated
for a non-pinned memory buffer, the CUDA runtime creates a
new pinned buffer and the CPU copies the data into the newly

398

created pinned buffer before initiating the DMA to transfer the
data to the GPU. This extra copy incurs additional latency and
CPU resources. Furthermore, it is recommended in CUDA’s
best practice guide [15] that pinned memory should be allocated
when the application is started, as pinning the memory during
the application runtime results in additional latency.

Thus, to transfer data received in packets efficiently, it is
important to have the data reside in pinned memory before
transferring the payload to the GPU. Note that incoming packets
in shared memory are not guaranteed to be put in a contiguous
space by the NIC driver and DPDK’s libraries. We overcome
this challenge by pinning the entire OpenNetVM’s shared
memory buffer, so every received packet reside in the pinned
memory before we initiate the DMA transfer to GPU. The
techniques we used to pin the shared memory used by NFs in
NetML is explained in Sec. III-D1.

We should note that the shared memory buffer is already
page-locked by the help of the DPDK library when the NF
manager starts. Pinning that shared memory using CUDA
API is still necessary as the CUDA runtime environment does
not recognize if a memory buffer is page-locked by another
application or not. Furthermore in CUDA, pinning a memory
buffer goes beyond just page-locking the memory buffer. It
also enables the Universal Virtual Addressing (UVA) feature,
which we utilize extensively in NetML. Generally, the GPU
subsystem has its own memory and memory address translation
function. Thus, a pointer to the data residing in host’s (CPU)
memory cannot be used in CUDA kernels running in the GPU
and vice versa. The exception is with GPUs using the UVA
feature, where CUDA kernels can use the address of host
memory region that is pinned. With UVA, if a GPU thread
encounters a pinned host memory address, the GPU’s DMA
engine will initiate data transfer from the host memory location
immediately and the GPU threads can continue processing the
data. This feature is also marketed as ”Zero-copy” memory.

1) Pinning a Memory Buffer: We explored two options
for pinning a memory buffer in CUDA and using it as
OpenNetVM’s (CPU) shared memory.
• Dynamically Allocating and Pinning Memory: In this

approach, we modify the DPDK library by overriding
DPDK’s default method of reserving the hugepage memory
and instead, we allocate the pinned memory buffers using
the CUDA API function cudaHostAlloc().We then use this
dynamically allocated pinned memory as OpenNetVM’s
shared memory.

• Pinning DPDK’s hugepages memory:In this approach, we
pin the shared memory allocated by the DPDK (NF manager)
process by using the cudaHostRegister() API function. This
API function allows us to pin an existing pageable host
memory buffer (e.g., buffer generated by malloc()) and
provides the same features as pinned memory allocated
by other CUDA API functions such as cudaHostAlloc().
When an NF starts, it accesses the address of every page
of the shared memory allocated by NF Manager and uses
cudaHostRegister() to pin all of the shared memory. Thus,
all the packets received by the NFV platform and buffered

in shared memory will reside in pinned memory as well.
Because this operation works with hugepages memory, it
does not incur any additional overhead for packet processing
by NFs, as seen in the Table II. We adopt this approach for
NetML. It also does not interfere with the poll mode drivers
of DPDK or the NFV platform’s ability to run multiple NFs.
To test the efficiency of these options, we dynamically

allocated a memory buffer of 2 gigabytes using the CUDA
API cudaHostAlloc() function and used it as shared memory
for the OpenNetVM NFV platform. With this approach, we ob-
served the packet processing throughput of OpenNetVM/DPDK
applications decreased significantly (see Table II).

Next, we DPDK utilizes hugepages for shared memory,
thus decreasing the number of distinct memory pages needed,
thereby also reducing the number of translation lookaside
buffers (TLB) entries needed. This speeds up the translation
of virtual page address to physical page address. On the other
hand, allocating shared memory with the CUDA API only
allocates memory with standard 4-kilobyte page size, resulting
in a huge number of entries in TLB and much higher TLB
miss rate. It also impacts the poll mode drivers and libraries
required to host multiple NFs in the NFV platform. This is
why the approach used by NetML is preferred.

TABLE II
FORWARDING THROUGHPUT OF OPENETVM USING PINNED MEMORY

Pinning Method /Packet Size 256 bytes 512 bytes
Dynamically Allocating Pinned Mem. 3.1 Gbps 5.1 Gbps

Pinning DPDK’s Hugepages 10 Gbps 10 Gbps

E. Transferring the Data to the GPU

We explored three alternatives to transfer the streaming data
received in OpenNetVM’s shared memory from the NIC to
GPU.In all three alternatives, multiple packets constituting an
image are sent from a traffic generator. Associated with the
image data packet payload is metadata containing the image
ID, data offset, a packet ID and the number of packets for
the image. The meta-data is used to reconstruct the image
in the host and GPU memory. The image ID identifies the
right image buffer, with the data offset helping transfer the
image data appropriately into the image buffer. The CUDA
API functions and CUDA kernel launches are asynchronous
with respect to CPU. i.e., CPU is not notified when the CUDA
function has finished processing. The packet ID and count help
determine when an entire image is received so that the DNN
image evaluation kernel is invoked after the entire image is in
the GPU. The ordering of the execution of CUDA functions, i.e.,
the GPU executes CUDA kernels in the order they are launched.
Three different data movement alternatives are described below.

1) Per-Packet cudaMemcpy (A#1): In this approach, when
an NF receives the packets carrying the data that is to be
transferred to GPU, it calls a CUDA API function, cudaMem-
cpyAsync(), individually for each packet to initiate the transfer
of the packet’s data to GPU memory. The cudaMemcpyAsync()
function is processed by a CPU thread and passes the necessary
information, i.e., memory address and size of data, to CUDA
runtime to initiate the DMA. CUDA runtime then schedules the
GPU’s DMA engine to asynchronously DMA the data. Figure

399

GPU

image data in packets
2

image tensor

Model Results

5

 ….

3

4

Deep Neural Network Model

DMA Engine DMA Engine

1

6

DPDK Shared Memory

transfer packet data using
cudaMemcpyAsync()

Fig. 2. Per Packet cudaMemcpy (A#1) 1. ML
application transfers the machine model and al-
locates a memory buffer in GPU. 2. streaming data
(packets) arrive in DPDK shared memory. 3. Pay-
load is transferred to GPU bound memory location
asynchronously using cudaMemcpyAsync() 4. When
all the data has been received in GPU, it is inferred
by object recognition model. 5. Once the result is
computed, it is transferred back to shared memory.
6. CPU based ML application receives the results.

GPU

image data in packets

2

image tensor

Model Results

5 ….

3

4
Deep Neural Network Model

DMA Engine DMA Engine

1

6
DPDK Shared Memory

Image Tensor in
Host’s Memory

7

Fig. 3. CPU Copy and Batch CudaMemcpy (A#2)
Unlike Per-Packet cudaMemcpy, CPU first copies
the packet data into a separate buffer. 2. A host
memory bound tensor is created 3. Payload is copied
from packets to host (by CPU) bound tensor 4.
When the host bound tensor has received all the
data, data is transferred to GPU bound tensor with
single cudaMemcpyAsync() function call. 5.The data
is processed by a DNN in GPU and 6,7.the results
are DMA to host memory.

GPU

image data in packets
2

image tensor

Model Results
7

5 ….

3

4 Deep Neural Network Model

DMA Engine DMA Engine

1

Kernel to
transfer data

Address
of packets

6
DPDK Shared Memory

Fig. 4. NetML. NetML improves (A#1) by having
the DMA transfer data from packet buffers as
packets arrive, using UVA: 3. Pointers to the packets
are sent to a CUDA kernel. 4. GPU threads use
UVA ”zero-copy” to write data to image tensor. 5.
When the image tensor has received all the data, it
is inferred by object recognition model

2 explains the steps taken by an ML application to transfer and
infer the data using this alternative. As the ML NF receives
application data (eg. an Image), the image data is transferred
from packets to GPU by using cudaMemcpyasync() and stored
in a buffer called tensor before the DNN kernels infer it.

2) CPU Copy and Batch cudaMemcpy (A#2): In this
alternative, the ML NF (running in the CPU) creates a ’pinned’
buffer in the host’s memory. The payload data from packets
are copied using CPU threads into this pinned buffer in
contiguous memory. This CPU-based data copy can be a
significant overhead. Once the entire application level data
(e.g., an image) has arrived and copied into the buffer, the
CPU-based NF launches the ML (e.g., PyTorch) application to
run inference on the image as shown in Figure 3. This method
uses the PyTorch API to transfer the data to GPU. With the
help of NVIDIA’s profiler [16], we verified that PyTorch uses
a single cudaMemcpyAsync() function to transfer the image
data to GPU before beginning inference on the image with the
model in the GPU. We believe that this is the approach that
most applications use, for inferring data using the GPU. I.e.,
wait for the entire application level data to be available before
running the inference algorithm on the image using the GPU.

3) NetML: In NetML, we utilize a CUDA kernel to transfer
the data to the GPU resident buffer. When packets arrive
in the shared memory with data in the payload, we launch
this data-transfer CUDA kernel with multiple GPU threads
and provide the addresses of the packets as the arguments,
which are obtained from OpenNetVM’s receive rings. GPU
threads use the memory address to read the packet’s payload
data. As the packet and the payload are in the host’s memory,
the GPU subsystem will use the Unified Virtual Addressing
(UVA) feature and initiate the DMA to obtain the data (packet
payload) and store it in the GPU’s memory buffer. Once the
entire application level data (e.g., an image) is transferred
to GPU, the ML application (e.g., DNN kernels) in the GPU
will process the data as shown in Figure 4.

It should be noted that the two alternatives, Per-Packet

cudaMemcpy() and CPU Copy and Batch cudaMemcpy())
involve CPU threads invoking CUDA API functions and
initiating the DMA. On the other hand, in NetML, the DMA is
initiated by the GPU subsystem when the GPU threads in the
CUDA kernel access the host’s memory address. Furthermore,
in second alternative, CPU Copy and Batch cudaMemcpy(),
the data from the packets is copied to a host memory buffer
using a CPU thread before performing a single cudaMemcpy()
to transfer the batch of data to GPU. While in NetML, the
GPU subsystem initiates the DMA as soon as the packets
arrive in the host CPU’s memory.

IV. EXPERIMENTAL RESULTS

Our experimental testbed has Dell PowerEdge R730 servers
with Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz processors,
each with 256GB RAM, running Ubuntu SMP Linux kernel
4.4.0-119-generic. Each system has a NVIDIA Pascal P100
GPU with 12 GB device memory, 56 SMs, 3584 FP32 CUDA
cores and dual DMA engines. For these experiments, nodes
were connected back-to-back with dual-port 10Gbps DPDK
compatible NICs to avoid any overheads related to switches.
We make use of DPDK based NF to generate line rate traffic.

We conducted a number of experiments to evaluate NetML’s
performance. The first set of experiments show the improve-
ment in the data transfer throughput, moving data from network
packet payload to the GPU, with NetML. The second set of
experiments demonstrate the improvement in throughput for
an image detection ML application running in NetML and also
to show the improvement in throughput for training a MNIST
[17] model for recognition of handwritten digits.
A. Data Transfer to GPU

To test the data transfer time taken by each alternative
(A#1, A#2 and NetML), we sent data streams of various
lengths to the server hosting the ML application over a 10
Gbps ethernet link. We used the tcpreplay application to
generate the UDP packets containing 1 kilobyte chunks of
raw image data as payload and transmitted the packets at 10
Gbps. We repeated the experiment across multiple data sizes,

400

evaluating the time spent to transfer the entire data stream, i.e.,
time between first packet entering the shared memory to last
packet’s payload being transferred to GPU. We also profiled
the GPU and created execution profiles using NVIDIA profiler,
while transferring an image of 500 kilobytes.

Figures 6, 7 and 8 show the results from the NVIDIA
profiler on the three alternatives. They show the timeline of
CUDA calls made for transferring a 500 kilobyte of image
data as 500 packets of size 1 kilobyte each and processing
it by DNN. The profiling clock on the X-Axis shows time
since the application has started. We highlight the time taken
for transferring data from host memory to the GPU, i.e., time
period between arrival of the first packet and the instant all
of the image data is transferred to GPU and the first DNN
kernel starts. This data transfer time is shown in green tab
highlighted on the X-Axis in the profiling diagram.

We can see in Figure 5 that per Packet cudaMemcpy (A#1)
is the slowest approach, with rapidly increasing latency as the
image size increases. The other approaches also have their
latency increase as the data transfer size increases, although
they remain much lower than (A#1). Observing the profiling
timeline in Figure 6, we see that the time taken to transfer data
is more than 4 milliseconds. The cause of additional latency
with (A#1) is the overhead of cudaMemcpyAsync() performed
on each and every packet. The average time taken for launching
cudaMemcpyAsync()) function is about 8 µseconds. When
transferring data from a large number of packets, this overhead
gets substantial. Moreover, the frequent cudaMemcpyAsync()
calls also occupies the GPU DMA engine. This precludes other
applications from utilizing the DMA for moving their data.

We can also see from Figure 5 that NetML is the fastest
among other alternatives for all data sizes. This is due to
the fact that in NetML, we initiate data transfer kernel to
DMA the data from packet payload as soon as the packet is
in OpenNetVM’s shared memory. It does not need to wait
for a certain size buffer to fill up before transferring data to
GPU as in CPU Copy and Batch cudaMemcpy (A#2).

The profiling timeline in Figure 7 shows that (A#2) takes
more than 1.37 milliseconds to transfer the data. This latency
is caused by (A#2) waiting for all 500 kilobytes of data to
get to the OpenNetVM’s shared memory and copying it to
the host side buffer as well as setting up cudaMemcpyAsync()
call to finally transfer the data to GPU.

Finally, Figure 8 shows that NetML cuts the data transfer
time by more than half of (A#2), to about 630 µseconds. After
receiving a minimum sized batch of packets, NetML launches
a ‘Data Transfer Kernel’, which initiates the DMA transfer
of packet data to the GPU. The runtime of this data transfer
kernel is very short, so it does not occupy the DMA engine for
long, unlike (A#1). Moreover, unlike (A#2), NetML does not
have to wait for the packets to be copied to a contiguous host
buffer and setting up an expensive cudaMemcpy() call. As a
result, it is faster than both the other alternatives. Furthermore,
NetML is faster than (A#2) by a similar amount of time
across all data sizes. This is because, limited by the 10 Gbps
link bandwidth for receiving the data, (A#2) has to wait for

 0

 5

 10

 15

 20

 25

 30

 35

0.5 1 2 4 8

T
im
e

 i
n

 M
ill
is
e
c
o
n
d
s

Transferred Data Size (Megabytes)

Time Taken to Transfer Various Data sizes to GPU

Per Packet cudaMemcpy
CPU copy batch cudaMemcpy

NetML

Fig. 5. Data transfer latency with NetML compared to cudaMemcpy(),
receiving data at 10 Gbps

the packets of the image to be delivered from the wire.

cudaMemcpyAsync DNN Kernels

DMA Engine Occupied

Fig. 6. GPU profile of Per Packet cudaMemcpy (A#1)

 cudaMemcpyAsync

Time taken for transferring data to GPU

Fig. 7. GPU Profile of CPU copy and Batch cudaMemcpy (A#2)

Data Transfer Kernel

Time taken for Transferring data to GPU

DNN Kernels

Fig. 8. GPU Profile of NetML

B. CPU consumption for transferring data
Although the operations performed in the GPU are asyn-

chronous, CPU cycles are consumed for calling CUDA API
functions as well as launching CUDA kernels in GPU. We mea-
sure how much CPU cycles are consumed for transferring data.
We counted the CPU cycles taken to call cudaMemcpyAsync
for (A#1), the time taken for copying the data from packets
into a host side buffer for (A#2), and time taken to launch the
GPU kernel to transfer packet for NetML.

In our experiments we found that it took an average of
25 µseconds to launch a CUDA kernel in GPU. However, in
NetML we can initiate the data transfer for multiple packets
concurrently by utilizing multiple threads in GPU. The result
of CPU consumption for transferring an image of various size

401

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

0.5 1 2 4 8

C
P
U

 C
y
c
le
s

Transferred Data Size (Megabytes)

CPU Cycles Consumed during Data Transfer to GPU

Per Packet cudaMemcpy
CPU copy batch cudaMemcpy

NetML

Fig. 9. CPU cycles consumed by NF for transferring a single image of various
sizes to GPU

is shown in Figure 9. Since we initiate the DMA by running
a kernel in GPU in NetML, there is very little overhead
for the CPU to transfer the packets. However, in (A#2), the
CPU is used to copy the data from packet payload to an
application’s contiguous buffer before DMAing to the GPU,
thus, consuming a lot of CPU cycles. (A#1) performs worse
than both the other alternatives because of the high CPU cycle
consumption for making expensive cudaMemcpyasync() calls
for each of the received packets.

C. Object detection with streaming image data
For experiments evaluating the throughput of an ML

application performing object detection on streaming image
data, we use two applications. First was PyTorch 0.4.0 [18]
with a pre-trained VGG-11 [19] object detection model
obtained from PyTorch’s TorchVision library. The second
was the Tiny-Yolo object detection and bounding algorithm
based on the Darknet library. We run PyTorch and Tiny-Yolo
each as an NF in the CPU in NetML. The CPU based NF
is essentially an NF on OpenNetVM with the optimizations
we discussed here for enabling data movement. We briefly
describe the two libraries, for completeness.

PyTorch is an open source ML library based on the Torch
ML library. Torch provides abstractions for NVidia’s CUDA
and the cuDNN neural network library. Torch’s primary data
structure is a multi-dimensional matrix, a tensor, which can
be allocated in both the host’s memory as well as the GPU’s
memory. PyTorch also has the TorchVision library, which
provides multiple pre-trained object detection models trained on
Imagenet dataset like AlexNet, VGG, ResNet, and DenseNet.

Tiny-Yolo is an object detection application based on the
Darknet library. It performs object recognition and creates a
bounding box around the detected object. Tiny-Yolo uses single
pass object detection algorithm, where the image data only
passes through the neural network once and the objects in the
image are detected and bounded by a box.

Image data is generated separately on another server and is
carried over UDP packets on a 10Gbps link to the server run-
ning NetML. The image data primed for inference in PyTorch
is generated by converting a PNG image of resolution 224×224
to a raw image array composed of floating point values for red,
green and blue (RGB) values of each pixel. The resulting image
data array is of size 224×224×3. This array is transported over

2352 packets, each being 256 bytes, 1176 packets of 512 bytes
and 784 packets of size 768 bytes to the server performing
inference. The packet payload includes meta-data describing
which section of the image array the packet payload belongs to,
the sequence number of the packet and additional information
such as a fileID so that the inference server can direct the data
to the appropriate buffers. A similar operation is performed
for an image intended for Tiny-Yolo. However, a larger image,
with a resolution of 416×416 is used. We experimented using
the alternative approaches for data transfer of streaming image
data, and measure the latency of inference for each image.

D. Inference of a Single Image
We see from Figure 10 that NetML yields the fastest infer-

ence at 4.3 msecs. This time is relatively independent of packet
size. With CPU copy and Batch cudaMemcpy (A#2), the
inference time is higher, at 5.5 msec. The time improves a little
as the packet size increases. The improvement for larger packet
sizes is due to improved efficiency of the CPU copying a larger
amount of data each time, as the packet size increases. For Per
Packet cudaMemcpy (A#1), which uses cudaMemcpyAsync()
to transfer data to GPU, latency is much higher 12.3 msec. The
latency for inferring decreases significantly as the packet size
increases as there are fewer CUDA calls being made. However,
it is still higher than NetML across all packet sizes. The image
detection performed in Tiny-Yolo also yields similar results
as shown in Figure 11, where NetML infers an image at 4.7
msecs while (A#2) has an inference time of 5.9 msec (for the
largest packet size). (A#1) is the slowest at 8.1 msec per image,
even at the largest packet size.

We also used the NVIDIA profiler to generate profiles during
the inference of an image for each alternative. We also measured
the time spent by the application for receiving the packet data
at the NF running in CPU. With the profiler we measured
the additional time it takes to move the data to GPU, and
the time spent on processing the data via DNN kernels in the
GPU. As we can see in the Figure 12, the time to receive the
data from the network and the model execution time are about
the same across alternatives. However, with NetML, the time
to transfer data to GPU is smaller than with both (A#1) and
(A#2). In (A#1), we can see the data transfer taking more than
half of total time of processing an image. The reason for the
extra latency in (A#1) is the overhead of calling individual
cudaMemcpy() to initiate DMA for each and every packet.
(A#2) has to wait for the entire image data to be available
before transferring the data to the GPU. The additional latency
is also due to time taken for copying the data from packets into
a buffer as well as setting up a cudaMemcpy() call for a bigger
chunk of data. NetML reduces the latency by starting the DMA
by data transfer kernel in GPU and initiate the data transfer
as a ’cut through’ (not waiting for the entire image data).

We also conducted experiments to evaluate the improvement
of throughput while training on the data. We created a
convolutional neural network with two convolutional layers,
one dropout layer and two fully connected layers and used
60,000 images from the MNIST database in various batch

402

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 200 300 400 500 600 700 800

In
fe
re
n
c
e

 T
im
e

 (
M
ill
is
e
c
o
n
d
s
)

Packet Size (Bytes)

Inference Time per Image in Pytorch

Per Packet cudaMemcpy
CPU copy batch cudaMemcpy

NetML

Fig. 10. Pytorch image inference time: data move-
ment alternatives

 4

 6

 8

 10

 12

 14

 16

 18

 200 300 400 500 600 700 800

In
fe
re
n
c
e

 T
im
e

 (
M
ill
is
e
c
o
n
d
s
)

Packet Size (Bytes)

Inference Time per Image in Tiny-Yolo

Per Packet cudaMemcpy
CPU copy batch cudaMemcpy

NetML

Fig. 11. Image Inference Time with Tiny-Yolo

 0

 2000

 4000

 6000

 8000

 10000

 12000

Per Packet
 cudaMemcpy

CPU copy batch

 cudaMemcpy
NetML

T
im
e

 i
n

 M
ic
ro
s
e
c
o
n
d
s

Method Used for Inference

Time Spent on Each Phase of Execution (PyTorch)

Receiving Data
Transferring to GPU

Processing Time

Fig. 12. Breakdown of Inference time using Pytorch

sizes to train the model. Each image is a monochrome
handwritten digit of size 28×28. The batch size is the number
of images propagated through the neural network before
performing optimization. As we experiment with streaming
data, we trained the model for only one epoch. We used
10,000 test images to verify the accuracy of the trained model.

We experimented with two data transfer alternatives, (A#2)
and NetML to transfer the data from network packets to the
GPU. The throughput, i.e. number of image files trained per
second for NetML, is shown in the table III. We can see that
increasing the batch size results in better throughput as the
model takes similar time to train irrespective of batch size.
However, the accuracy of the trained model decreases as the
batch size increases. Moreover, we see that NetML has at least
30% higher throughput that (A#2) for all batch sizes. Further-
more, for experiments with batch size 100, we utilized a 20
Gbps link as we saturated the 10 Gbps link while sending data.

TABLE III
NO. OF FILES TRAINED PER SECOND FOR DIFFERENT BATCH SIZES

Alternatives/Batch Size 50 80 100
Throughput, (A#2) 22727 30005 41518

Throughput, NetML 29585 40113 56497
Improvement with NetML 30.1% 33.6% 36%

Accuracy with NetML 95% 93% 92 %

V. RELATED WORK

GPU Based Packet Processing: A number of studies have
evaluated using GPUs for accelerating packet processing.
PacketShader [20] utilizes GPUs to process packet headers
for switching and routing, and SSLShader [21] provides high
throughput SSL processing in the GPU. Snap [22] built a packet
router using GPU. GPUNFV is a NFV platform that [23] creates
NFs in GPU for packet processing. GPUnet [24] creates a
networking layer for GPUs and offers socket level abstractions
for programs running in GPUs. NBA [25] utilizes an adaptive
load balancer to balance the processing at NFs running on
both the CPU and GPU. G-NET [26] creates a scheduling
and virtualization framework to share GPU resources across
multiple NFs running concurrently. All of these works employ
batching of packets into a buffer before transferring them to
the GPU. While they exploit the parallelism offered by having
a large number of GPU cores, none of them effectively address
the data movement problem, and essentially adopt the approach
outlined in the alternative (A#2). Unlike other works noted
above, APUNet [27] uses integrated GPU to process packets
and eliminates the data transfer over PCIe BUS. However,

integrated GPUs have much fewer compute cores than discrete
GPUs, thus, they would not be able to provide high speed-up
for processing DNNs. Therefore, the data transfer problem
remains relevant as processing DNNs require much powerful
discrete GPUs.
Accelerating Training and Inference of ML Applications:
Popular DNN algorithms such as Inception and ResNet require
significant processing and storage, resulting in high latency for
inference. Studies to produce light-weight versions of DNN
which can run on edge devices and have lower compute cost
and faster inference have been attempted. SqueezeNet [28],
with fewer parameters and a small model size runs much faster.
Similarly, SqueezeDet [29] is built upon SqueezeNet and has
low computational overhead, and is able to achieve real-time
object detection. Other approaches to accelerate ML training
and inference use binarized neural network [11] or compress
the DNN model [30]. Our approach in NetML complements
these simplifications and optimizations of the ML algorithms.
ML applications can further be accelerated by using specialized
hardware such as the NVIDIA’s tensor cores [31], Google’s
TPU [32], MIT’s Eyeriss [12]. However, these hardware
solutions come as a co-processor or subsystem that sits on the
other side of the PCIe or serial bus. It is necessary to transfer the
data and instructions to these hardware accelerators in a manner
similar to a GPU. The optimization performed in NetML to
transfer data could benefit these hardware accelerators as well.
Processing Streaming Data: Apache Spark [33] and Storm
[34] are popular platforms for stream data processing. However,
they do not natively support GPU hardware. G-Storm [35]
extends Apache Storm to process streaming data in the GPU.
GPL [36] performs query processing on the GPU for streaming
data. However, these do not optimize data transfer to the GPU
and use the Linux kernel networking stack. NetML can provide
the benefit of both DPDK-based OpenNetVM’s faster zero-
copy, poll-mode packet processing and the more efficient data
transfer to GPU for an edge server running these stream data
processing platforms.
Distributed ML algorithms: Distributed ML algorithms such
as distributed DNN often use a network of compute servers to
train large ML models. Distributed DNNs are usually trained by
either partitioning data across several compute nodes running
the same DNN model and periodically aggregating the results
(data parallel) [37], or by splitting the DNN model over multiple
compute nodes and feeding partial results computed by one

403

node as input to another node (Model parallel) [8]. In both cases,
a large number of model parameters or training data has to be
copied from one compute node to another. This data transfer
cost can be significant. The work [38] shows that the overall
task-completion time can be reduced by better pipelining of the
communication and processing tasks. Others, such as DAIET
[7] perform distributed DNN training on multiple machines
to reduce the amount of information exchanged between the
compute servers with help of a data aggregating middle-box.
NetML may be used in this context to speed up the data
movement at each of the compute nodes.

VI. CONCLUSION

We presented NetML, a edge-server enhancement speedup
for Machine Learning applications to process streaming data
on OpenNetVM, a DPDK-based NFV platform. NetML runs
on hybrid CPU and GPU based system architectures, with the
GPU resources managed by the CUDA runtime environment.
In NetML, we pin the DPDK process’s shared memory to
achieve low-latency, efficient transfer of streaming data to
the GPU. NetML transfers packet data to GPU as soon as
the incoming data arrives, without having to wait or buffer
all the application data. It also avoids having the CPU to
copy data into a contiguous buffer, and utilizes asynchronous
GPU-resident functions to initiate the data transfer. Thus,
NetML reduces CPU consumption and minimizes latency
and seeks to minimize the idle time on the GPU. NetML is
effective in improving throughput and latency both for learning
and inference, without requiring fundamental changes to the
ML libraries. NetML can benefit every application processing
streaming data on GPU. We have demonstrated that NetML
reduces the latency to infer an image for object detection using
a neural network by 20% and increased throughput of training
a neural network with streaming data by more than 30%.

VII. ACKNOWLEDGEMENT

This work was supported by the US NSF grant 1763929
and a grant from Hewlett Packard Enterprise Co.

REFERENCES

[1] NVIDIA, “Nvidia deep learning platform,”
https://developer.nvidia.com/deep-learning, 2019.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[3] T. NVIDIA, “P100 white paper,” NVIDIA Corporation, 2016.
[4] A. Dhakal and K. Ramakrishnan, “Machine learning at the network edge

for automated home intrusion monitoring,” in Workshop on Machine
Learning and Artificial Intelligence in Computer Network, ICNP 2017.

[5] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y.
Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in ACM
SIGARCH Computer Architecture News, vol. 43, no. 3. ACM, 2015.

[6] T. Kraska, A. Talwalkar, and J. Duchi, “Mlbase: A distributed machine-
learning system,” 2013.

[7] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
network computation is a dumb idea whose time has come,” in
Proceedings of the 16th ACM Workshop on Hot Topics in Networks.
ACM, 2017, pp. 150–156.

[8] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in ICPR. IEEE,
2016, pp. 2464–2469.

[9] G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scantlen,
and P. S. Crozier, “The development of mellanox/nvidia gpudirect over
infinibanda new model for gpu to gpu communications,” Computer
Science-Research and Development, vol. 26, no. 3-4, pp. 267–273, 2011.

[10] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv:1804.02767 [cs.CV], 2018.

[11] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1,” arXiv:1602.02830 [cs.LG], 2016.

[12] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ACM
SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press,
2016, pp. 367–379.

[13] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “OpenNetVM: A Platform for High
Performance Network Service Chains,” in Proceedings of the 2016
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. ACM, Aug. 2016.

[14] D. Intel, “Data plane development kit,” https://dpdk.org/, 2014.
[15] C. Cuda, “Best practice guide, 2018,” 2018.
[16] “Nvidia visual profiler user guide,”

https://docs.nvidia.com/pdf/CUDA Profiler Users Guide.pdf.
[17] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.
[18] A. Paszke et al., “Automatic differentiation in pytorch,” 2017.
[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[20] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated

software router,” in ACM SIGCOMM Computer Communication Review,
vol. 40, no. 4. ACM, 2010, pp. 195–206.

[21] K. Jang, S. Han, S. Han, S. B. Moon, and K. Park, “Sslshader: Cheap
ssl acceleration with commodity processors.” in NSDI, 2011.

[22] W. Sun and R. Ricci, “Fast and flexible: parallel packet processing with
gpus and click,” in ANCS, 2013, pp. 25–35.

[23] X. Yi, J. Duan, and C. Wu, “Gpunfv: a gpu-accelerated nfv system,” in
Proceedings of the First Asia-Pacific Workshop on Networking. ACM,
2017, pp. 85–91.

[24] M. Silberstein et al., “Gpunet: Networking abstractions for gpu programs,”
vol. 34, no. 3. ACM, 2016, p. 9.

[25] J. Kim et al., “Nba (network balancing act): a high-performance packet
processing framework for heterogeneous processors,” in Proceedings of
the Tenth European Conference on Computer Systems. ACM, 2015,
p. 22.

[26] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-net:
Effective gpu sharing in nfv systems,” in NSDI, 2018.

[27] Y. Go, M. Jamshed, Y. Moon, C. Hwang, and K. Park, “Apunet:
revitalizing gpu as packet processing accelerator,” in Proceedings
of the 14th USENIX Conference on Networked Systems Design and
Implementation. USENIX Association, 2017, pp. 83–96.

[28] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and 0.5 mb model size,” arXiv:1602.07360 [cs.CV], 2016.

[29] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving.” arXiv:1612.01051 [cs.CV], 2016.

[30] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv:1510.00149 [cs.CV], 2015.

[31] NVIDIA, “Nvidia tesla v100 gpu architecture.”
[32] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit,” in ISCA. IEEE, 2017.
[33] M. Zaharia et al., “Apache spark: a unified engine for big data processing,”

Communications of the ACM, vol. 59, no. 11, 2016.
[34] “Apache storm,” http://storm.apache.org/, accessed:2018-12-01.
[35] Z. Chen, J. Xu, J. Tang, K. Kwiat, and C. Kamhoua, “G-storm: Gpu-

enabled high-throughput online data processing in storm,” in Big Data
(Big Data), 2015 IEEE International Conference on. IEEE, 2015.

[36] J. Paul, J. He, and B. He, “Gpl: A gpu-based pipelined query processing
engine,” in Proceedings of the 2016 International Conference on
Management of Data. ACM, 2016, pp. 1935–1950.

[37] J. Dean et al., “Large scale distributed deep networks,” in NIPS, 2012.
[38] H. Kim, J. Park, J. Jang, and S. Yoon, “Deepspark: A spark-

based distributed deep learning framework for commodity clusters,”
arXiv:1602.08191 [cs.LG], 2016.

404

